skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Butte, Atul J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ObjectiveEarly identification of chronic diseases is a pillar of precision medicine as it can lead to improved outcomes, reduction of disease burden, and lower healthcare costs. Predictions of a patient’s health trajectory have been improved through the application of machine learning approaches to electronic health records (EHRs). However, these methods have traditionally relied on “black box” algorithms that can process large amounts of data but are unable to incorporate domain knowledge, thus limiting their predictive and explanatory power. Here, we present a method for incorporating domain knowledge into clinical classifications by embedding individual patient data into a biomedical knowledge graph. Materials and MethodsA modified version of the Page rank algorithm was implemented to embed millions of deidentified EHRs into a biomedical knowledge graph (SPOKE). This resulted in high-dimensional, knowledge-guided patient health signatures (ie, SPOKEsigs) that were subsequently used as features in a random forest environment to classify patients at risk of developing a chronic disease. ResultsOur model predicted disease status of 5752 subjects 3 years before being diagnosed with multiple sclerosis (MS) (AUC = 0.83). SPOKEsigs outperformed predictions using EHRs alone, and the biological drivers of the classifiers provided insight into the underpinnings of prodromal MS. ConclusionUsing data from EHR as input, SPOKEsigs describe patients at both the clinical and biological levels. We provide a clinical use case for detecting MS up to 5 years prior to their documented diagnosis in the clinic and illustrate the biological features that distinguish the prodromal MS state. 
    more » « less
  2. Li-Jessen, Nicole Yee-Key (Ed.)
    Objective The Pediatric Emergency Care Applied Research Network (PECARN) has developed a clinical-decision instrument (CDI) to identify children at very low risk of intra-abdominal injury. However, the CDI has not been externally validated. We sought to vet the PECARN CDI with the Predictability Computability Stability (PCS) data science framework, potentially increasing its chance of a successful external validation. Materials & methods We performed a secondary analysis of two prospectively collected datasets: PECARN (12,044 children from 20 emergency departments) and an independent external validation dataset from the Pediatric Surgical Research Collaborative (PedSRC; 2,188 children from 14 emergency departments). We used PCS to reanalyze the original PECARN CDI along with new interpretable PCS CDIs developed using the PECARN dataset. External validation was then measured on the PedSRC dataset. Results Three predictor variables (abdominal wall trauma, Glasgow Coma Scale Score <14, and abdominal tenderness) were found to be stable. A CDI using only these three variables would achieve lower sensitivity than the original PECARN CDI with seven variables on internal PECARN validation but achieve the same performance on external PedSRC validation (sensitivity 96.8% and specificity 44%). Using only these variables, we developed a PCS CDI which had a lower sensitivity than the original PECARN CDI on internal PECARN validation but performed the same on external PedSRC validation (sensitivity 96.8% and specificity 44%). Conclusion The PCS data science framework vetted the PECARN CDI and its constituent predictor variables prior to external validation. We found that the 3 stable predictor variables represented all of the PECARN CDI’s predictive performance on independent external validation. The PCS framework offers a less resource-intensive method than prospective validation to vet CDIs before external validation. We also found that the PECARN CDI will generalize well to new populations and should be prospectively externally validated. The PCS framework offers a potential strategy to increase the chance of a successful (costly) prospective validation. 
    more » « less
  3. There has long been an interest in understanding how the hazards from spaceflight may trigger or exacerbate human diseases. With the goal of advancing our knowledge on physiological changes during space travel, NASA GeneLab provides an open-source repository of multi-omics data from real and simulated spaceflight studies. Alone, this data enables identification of biological changes during spaceflight, but cannot infer how that may impact an astronaut at the phenotypic level. To bridge this gap, Scalable Precision Medicine Oriented Knowledge Engine (SPOKE), a heterogeneous knowledge graph connecting biological and clinical data from over 30 databases, was used in combination with GeneLab transcriptomic data from six studies. This integration identified critical symptoms and physiological changes incurred during spaceflight. 
    more » « less
  4. null (Ed.)